How to Calculate the Probabilities of Winning the Nine Mega Millions Prize Levels:

Mega Millions numbers are drawn from two sets of numbers. Five numbers are drawn from one set of 56 numbered white balls and one Mega Ball number is drawn from a second set of 46 numbered gold balls. The odds of winning Mega Millions are calculated by combining the odds for both sets of numbers for all prize levels. The first, third, fifth, sixth, eighth and ninth prize level odds are determined by the chances of choosing a given number of white balls correctly as well as the gold Mega Ball. The second, fourth and seventh prize level odds are determined by the chances of choosing a given number of white balls correctly and the gold Mega Ball incorrectly. Since the order of the items chosen is irrelevant, the applicable probability rule is the formula to determine combinations.

Before calculating the odds for the different prize levels, calculate the total number of combinations possible for each portion of the Mega Millions draw.

A. Calculate how many combinations of 5 numbers can be drawn from 56 unique numbers:

The formula is as follows:

\[
\frac{56!}{5!(56-5)!} = \frac{56 \times 55 \times 54 \times 53 \times 52 \times 5!}{5 \times 4 \times 3 \times 2 \times 1 \times 5!} = \frac{56 \times 55 \times 54 \times 53 \times 52}{5 \times 4 \times 3 \times 2 \times 1} = 458,377,920
\]

where ! indicates a factorial, i.e., \(n! = n \times (n-1) \times (n-2) \times \ldots \times 2 \times 1 \)

Thus, there are 3,819,816 different ways in which 5 numbers can be chosen from a total of 56 unique numbers.

B. Calculate how many combinations of 1 number can be drawn from 46 unique numbers:

\[
\frac{46!}{1!(46-1)!} = \frac{46 \times 45!}{1 \times 45!} = 46
\]

Thus, there are 46 different ways 1 number can be chosen from a total of 46 unique numbers.
1. **Top Prize Level:** *Match all five numbers plus the Mega Ball* (1 in 175,711,536 odds)

 Step 1: Calculate the number of ways in which 5 numbers can be chosen correctly out of 5 numbers drawn from 56 unique numbers.

 The formula is as follows:

 \[
 \frac{5!}{(56 - 5)!} \times \frac{(56 - 5)!}{(5 - 5)!} = \frac{5!}{0!} = \frac{5!}{5!} = 1
 \]

 (note: 0! = 1)

 This means that there is only 1 way in which 5 numbers out of 5 numbers drawn from a field of 56 numbers can be chosen correctly.

 Thus, there is only 1 chance in 3,819,816 of correctly choosing all five numbers drawn in the first portion of Mega Millions.

 Step 2: Calculate how many ways the correct Mega Ball number can be chosen from 46 unique numbers.

 The chance of correctly choosing the Mega Ball is simply 1 in 46.

 Step 3: Determine the chance of choosing both correctly by multiplying these figures together:

 \[
 \frac{1}{3,819,816} \times \frac{1}{46} = \frac{1}{175,711,536} \text{ or 1 chance in 175,711,536.}
 \]

2. **Second Prize Level:** *Match all five numbers only* (1 in 3,904,700.80 odds)

 Step 1: The chance of getting 5 numbers correct out of 5 numbers drawn from 56 unique numbers is 1 in 3,819,816 (see #1, Step 1 above.)

 Step 2: The chance of correctly choosing the Mega Ball is 1 in 46. Therefore, the chances of incorrectly choosing the Mega Ball are, conversely, 45 in 46.

 Step 3: Determine the chances of choosing 5 out of 5 of 56 correctly and getting the Mega Ball incorrect by multiplying these figures together:

 \[
 \frac{1}{3,819,816} \times \frac{45}{46} = \frac{45}{175,711,536} = \frac{1}{3,904,700.80} \text{ or 1 chance in 3,904,700.80.}
 \]
3. **Third Prize Level:** *Match four numbers plus the Mega Ball* (1 in 689,064.85 odds)

Step 1: Calculate the number of ways in which 4 numbers can be chosen correctly out of 5 numbers drawn from 56 unique numbers.

The formula is as follows:

\[
\frac{5!}{4! (5 - 5)!} \times \frac{(56 - 5)!}{(56 - 5) - (5 - 4)!} = \frac{5 \times 4!}{4! \times (51 - 1)!} = \frac{5 \times 51 \times 50!}{50!1} = 5 \times 51 = 255
\]

This means that there are 255 different ways in which 4 numbers out of 5 numbers drawn from a field of 56 numbers can be chosen correctly.

Thus, the chances are 255 in 3,819,816 of correctly choosing 4 out of 5 numbers in the first portion of Mega Millions.

Step 2: The chance of correctly choosing the Mega Ball is simply 1 in 46.

Step 3: Determine the chances of choosing 4 out of 5 of 56 correctly and getting the Mega Ball correct by multiplying these figures together:

\[
\frac{255}{3,819,816} \times \frac{1}{46} = \frac{255}{175,711,536} = \frac{1}{689,064.85} \text{ or 1 chance in 689,064.85.}
\]

4. **Fourth Prize Level:** *Match four numbers only* (1 in 15,312.55 odds)

Step 1: The chances of getting 4 numbers correct out of 5 numbers drawn from 56 unique numbers are 255 in 3,819,816 (see #3, Step 1, above.)

Step 2: The chance of correctly choosing the Mega Ball is 1 in 46. Therefore, the chances of incorrectly choosing the Mega Ball are, conversely, 45 in 46.

Step 3: Determine the chances of choosing 4 out of 5 of 56 correctly and getting the Mega Ball incorrect by multiplying these figures together:

\[
\frac{255}{3,819,816} \times \frac{45}{46} = \frac{11,475}{175,711,536} = \frac{1}{15,312.55} \text{ or 1 chance in 15,312.55.}
\]
5. **Fifth Prize Level:** *Match three numbers plus the Mega Ball* (1 in 13,781.30 odds)

Step 1: Calculate the number of ways in which 3 numbers can be chosen correctly out of 5 numbers drawn from 56 unique numbers.

The formula is as follows:

\[
\frac{5!}{3!(5-3)!} \times \frac{(56 - 5)!}{(56 - 5)!(5-3)!} = \frac{5 \times 4 \times 3!}{3!} \times \frac{51!}{51 - 3)!
\]

This means that there are 12,750 different ways in which 3 numbers out of 5 numbers drawn from a field of 56 numbers can be chosen correctly.

Thus, the chances are 12,750 in 3,819,816 of correctly choosing 3 out of 5 numbers in the first portion of Mega Millions.

Step 2: The chance of correctly choosing the Mega Ball is simply 1 in 46.

Step 3: Determine the chances of choosing 3 out of 5 of 56 correctly and getting the Mega Ball correct by multiplying these figures together:

\[
\frac{12,750}{3,819,816} \times \frac{1}{46} = \frac{1}{13,781.30} \text{ or 1 chance in 13,781.30.}
\]

6. **Sixth Prize Level:** *Match two numbers plus the Mega Ball* (1 in 843.75 odds)

Step 1: Calculate the number of ways in which 2 numbers can be chosen correctly out of 5 numbers drawn from 56 unique numbers.

The formula is as follows:

\[
\frac{5!}{2!(5-2)!} \times \frac{(56 - 5)!}{(56 - 5)!(5-2)!} = \frac{5 \times 4 \times 3!}{2!} \times \frac{51!}{51 - 3)! 3!} = \frac{5 \times 4 \times 51 \times 50 \times 49 \times 48!}{2 \times 3! \times 3!} = \frac{5 \times 51 \times 50}{3} = 208,250
\]

This means that there are 208,250 different ways in which 2 numbers out of 5 numbers drawn from a field of 56 numbers can be chosen correctly.

Thus, the chances are 208,250 in 3,819,816 of correctly choosing 2 out of 5 numbers in the first portion of Mega Millions.

Step 2: The chance of correctly choosing the Mega Ball is simply 1 in 46.

Step 3: Determine the chances of choosing 2 out of 5 of 56 correctly and getting the Mega Ball correct by multiplying these figures together:

\[
\frac{208,250}{3,819,816} \times \frac{1}{46} = \frac{1}{843.75} \text{ or 1 chance in 843.75.}
\]

7. **Seventh Prize Level:** *Match three numbers only* (1 in 306.25 odds)
Step 1: The chances of getting 3 numbers correct out of 5 numbers drawn from 56 unique numbers are 12,750 in 3,819,816 (see #5, Step 1, above.)

Step 2: The chance of correctly choosing the Mega Ball is 1 in 46. Therefore, the chances of incorrectly choosing the Mega Ball are, conversely, 45 in 46.

Step 3: Determine the chances of choosing 3 out of 5 of 56 correctly and getting the Mega Ball incorrect by multiplying these figures together:

\[
\begin{align*}
\frac{12,750}{3,819,816} \times \frac{45}{46} &= \frac{573,750}{175,711,536} = \frac{1}{306.25} = 1 \text{ chance in } 306.25
\end{align*}
\]

8. Eighth Prize Level: Match one number plus the Mega Ball (1 in 140.63 odds)

Step 1: Calculate the number of ways in which 1 number can be chosen correctly out of 5 numbers drawn from 56 unique numbers.

The formula is as follows:

\[
\frac{5!}{(5 - 1)!} \cdot \frac{(56 - 5)!}{(56 - 5)!(5 - 1)!} = \frac{5!}{4!} \cdot \frac{51!}{49!} = 5 \cdot 51 \cdot 50 \cdot 49 \cdot 48 \cdot 47! = \frac{5 \cdot 51 \cdot 50 \cdot 49 \cdot 48}{24} = 1,249,500
\]

This means that there are 1,249,500 different ways in which 1 number out of 5 numbers drawn from a field of 56 numbers can be chosen correctly.

Thus, the chances are 1,249,500 in 3,819,816 of correctly choosing 1 out of 5 numbers in the first portion of Mega Millions.

Step 2: The chance of correctly choosing the Mega Ball is simply 1 in 46.

Step 3: Determine the chances of choosing 1 out of 5 of 56 correctly and getting the Mega Ball correct by multiplying these figures together:

\[
\begin{align*}
\frac{1,249,500}{3,819,816} \times \frac{1}{46} &= \frac{1,249,500}{175,711,536} = \frac{1}{140.63} = 1 \text{ chance in } 140.63
\end{align*}
\]
9. Ninth Prize Level: *Match the Mega Ball only* (1 in 74.80 odds)

Step 1: Calculate the number of ways in which no numbers are chosen correctly out of 5 numbers drawn from 56 unique numbers.

The formula is as follows:

\[
\frac{5!}{0!(5-0)!} \cdot \frac{(56 - 5)!}{(56 - 5 - (5 - 0))!} = \frac{5!}{1 \cdot 5!} \cdot \frac{51!}{(51 - 5)!} \cdot \frac{51 \cdot 50 \cdot 49 \cdot 48 \cdot 47!}{46! \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1} = \frac{51 \times 50 \times 49 \times 48 \times 47}{120} = 2,349,060
\]

(Note: 0! = 1)

This means that there are 2,349,060 different ways in which no numbers out of 5 numbers drawn from a field of 56 numbers are chosen correctly.

Thus, the chances are 2,349,060 in 3,819,816 of correctly choosing 0 out of 5 numbers in the first portion of Mega Millions.

Step 2: The chance of correctly choosing the Mega Ball is simply 1 in 46.

Step 3: Determine the chances of choosing 0 out of 5 of 56 correctly and getting the Mega Ball correct by multiplying these figures together:

\[
\frac{2,349,060}{3,819,816} \cdot \frac{1}{46} = \frac{2,349,060}{175,711,536} = \frac{1}{74.80} \text{ or 1 chance in } 74.80.
\]